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Abstract In this paper, we present the multistage homotopy perturbation method for
finding the solution of the chemical kinetics with nonlinear reactions. We develop a
general scheme for finding the analytic solution of chemical reaction networks and
apply it to motivating chemical examples such as the enzyme kinetics model and the
Brusselator model. We illustrate the numerical result for the models and show the
accuracy of the method.
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1 Introduction

In a chemical system, chemical species interact with other species through various
reaction channels and their concentrations or molecular numbers are changed by the
interactions. Generally a reaction is described in the form

∑

i

ai j Si
k→

∑

i

bi j Si ,

where Si is the i th species, and ai j , bi j are molar amounts of the i th species as the
reactant and the product of the j th reaction, respectively. For example, a reaction

A + B
k→ C + D denotes that one mole of a species A and that of B react and

produce one mole of C and that of D with the reaction rate constant k. To describe the
dynamics of the chemical system, researchers derive a governing equation with the
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system of ordinary differential equations(ODEs), which describes the time evolution
of the concentration of species in the system. The general form of the governing
equation is

dy
dt

= V R(y), (1)

where y(t) denotes the vector of concentration of species at time t , V denotes the
stoichiometric matrix whose (i, j) component is the stoichiometric amount of the i th
species changed by the j th reaction, and R(y) denotes the vector function whose the i th
entry is the reaction rate of the i th reaction. The reaction rate function is determined
by the mass action kinetics which assumes that the reaction rate is proportional to
concentration of reactant species, or other kinetics such as Michaelis–Menten kinetics
[1,2]. The system of ODEs has been used as the governing equation in the broad areas
of biological sciences such as cell biology, systems biology, physiology and biochem-
istry. It is well known that the system of ODEs is generally accurate for describing the
dynamics of large-scale biological or biochemical networks [3–5]. However, most of
the chemical systems include nonlinear reactions whose rate functions are nonlinear
and the nonlinearity leads to difficulties in finding the solution of the system of ODEs.
The analytic solution of the system of the ODEs have not been known yet for most
of chemical systems with nonlinear reactions. Recently several semi-analytic meth-
ods such as the differential transform method(DTM) [6–8], homotopy perturbation
method(HPM) [9,10]and variational iteration method have been introduced.

Among chemical systems with nonlinear reactions, the enzyme kinetics model is
a fundamental and important chemical reaction system. Many important biochemical
reactions such as gene transcription, translation and protein-protein interactions can
be considered as enzyme kinetics models [11]. Recently an approximate analytic
solution of the enzyme kinetics model has been reported with employment of the
homotopy perturbation method [9]. The authors claimed the accuracy of their method
by comparing the solution curves from the method with numerical solutions from
conventional numerical schemes.

In this paper we develop a more accurate and rigorous method for finding the solu-
tions of nonlinear reaction networks based on the multistage homotopy perturbation
method (MHPM). We apply our method to the enzyme kinetics model and the Brus-
selator model, an oscillatory autocatalytic model and illustrate the accuracy of the
method. The proposed method can be applied to more complex nonlinear reaction
models.

The paper is organized as follows. In Sect. 2, we present a novel multistage homo-
topy perturbation method. In Sect. 3, we apply the method to two motivating examples
such as the enzyme kinetics model and the Brusselator model, and we show detailed
analysis on the two models. In Sect. 4, we illustrate the numerical results obtained
from our method to show the accuracy and efficiency of our method.

2 Description of multistage homotopy perturbation method

Let us consider a general system in the operator form:
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L(ui ) + Ni (u1, u2, . . . , um) − fi (t) = 0, (2)

subject to the initial conditions ui (t0) = ci,0, i = 1, 2, . . . , m, where L is a linear
operator and N is a nonlinear operator and fi are known analytic functions. Homotopy
perturbation method(HPM) defines the homotopy vi (t, p) : � × [0, 1] → R which
satisfies

H(vi , p) = (1 − p)[L(vi ) − L(v̂i )] + p[L(vi ) + Ni (v1, v2, . . . , vm)− fi (t)] = 0,

(3)

or

H(vi , p) = L(vi ) − L(v̂i ) + pL(v̂i ) + p[Ni (v1, u2, . . . , vm) − fi (t)] = 0, (4)

where p ∈ [0, 1] is the embedding parameter and v̂i , i = 1, 2, . . . , m are initial
approximations. Then it is easy to see that when p = 0, H(vi , p) becomes a linear
system and when p = 1, H(vi , p) is the original system (2). Let us consider the
embedding parameter p as a small perturbation. Applying the perturbation technique
we assume that the solution vi can be given by a power series in the embedding
parameter p

vi = vi,0 + pvi,1 + p2vi,2 + · · · , (5)

where vi, j will be determined. Substituting (5) into (4), and arranging the coefficients
of the same power of p, we have the system of equations for the function vi, j , (i =
1, 2, . . . , m, j = 1, 2, . . .). Taking inverse operator L−1 to the system the function
vi, j can be easily obtained. Then we have the approximate solution of (2)

ui = lim
p→1

vi = vi,0 + vi,1 + vi,2 + · · · . (6)

Since ui (t0) = ci,0, we assume that vi,0(t0) = ci,0 and vi, j (t0) = 0, j = 1, 2, . . . . Let
φi,n be the n-term approximation of ui defined by

φi,n =
n∑

j=0

vi, j . (7)

Since the HPM is based on the perturbation with the initial approximation, vi,0 with
vi,0(t0) = ci,0, the n-term approximation φi,n is a good agreement of the solution
ui in a neighborhood of t = t0. However, the HPM could fail to obtain an accurate
approximation φi,n in a large domain �. To overcome this difficulty the new modi-
fication of HPM which is called the multistage HPM (MHPM) has been introduced
[12]. In MHPM the domain � = (0, t f ) can be divided into a sequence of subin-
tervals (t0, t1), (t1, t2), . . . , (tl−1, tl), where t0 = 0, tl = t f . For the simplicity we
assume the equalspaced points tk with �t = tk+1 − tk, k = 1, 2, . . . , l − 1. In each
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subinterval �k = (tk, tk+1) the MHPM employs the standard HPM. Let us denote
uk

i = ui |�k , v
k
i. j = vi, j |�k and φk

i,n = φi,n|�k . To apply the HPM in each subinterval

�k , it is necessary to know the values of initial conditions at tk . That is, vk
i,0. Here we

impose the value of initial condition as vk
i,0 ≈ φk−1

i,n (tk), k = 0, 1, . . . , l − 1.

3 Applications of multistage homotopy perturbation method

In the following, we apply the multistage homotopy perturbation method to two moti-
vating models, enzyme-substrate model and Brusselator model and show the effec-
tiveness of the proposed method.

3.1 Enzyme-substrate reaction model

The enzyme kinetics model is a chemical model which includes a nonlinear reaction.
The model consists of the binding/unbinding of enzyme and substrate, and production
of the product. The model mechanism is described as follows;

E + S
k1�

k−1
ES

k2→E + P, (8)

where E, S, E S and P denote enzyme, substrate, enzyme-substrate complex and prod-
uct, respectively, and k1, k−1 and k2 denote the rates of reactions. If we denote the con-
centrations of E, S, E S, P by y1, y2, y3, y4, respectively, and y = (y1, y2, y3, y4)

T ,
we write the governing equation as

dy
dt

=

⎡

⎢⎢⎣

−1 1 1
−1 1 0
1 −1 −1
0 0 1

⎤

⎥⎥⎦

⎡

⎣
k1 y1 y2
k−1 y3
k2 y3

⎤

⎦ =

⎛

⎜⎜⎝

−k1 y1 y2 + k−1 y3 + k2 y3
−k1 y1 y2 + k−1 y3

k1 y1 y2 − k−1 y3 − k2 y3
k2 y3

⎞

⎟⎟⎠ , (9)

We assume a typical initial condition (y1, y2, y3, y4) = (e0, s0, 0, 0). Since the sub-
strate is exhausted and it produces the product P at the equilibrium, the equilibrium
of the model can be founded easily as (y1, y2, y3, y4) = (e0, 0, 0, s0). Since the con-
served quantities for the model are y1 + y3 + y4 = s0 and y2 + y3 = e0, one can
reduce the above system (9) into

dy1

dt
= −k1e0 y1 + k1 y1 y3 + k−1 y3

dy3

dt
= k1e0 y1 − k1 y1 y3 − (k−1 + k2)y3 (10)

with the initial condition (y1, y3) = (s0, 0).
As in [9], to obtain the system of the nondimensional variables from the above

system (10) we define the following variables.
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u(τ ) = y1(t)

s0
, v(τ ) = (s0 + Km)y3(t)

e0s0
, τ = k1(s0 + Km)t,

Km = k−1 + k2

k1
, ρ = k−1

k2
, ε = e0

s0 + Km
, σ = s0

Km
(11)

and

T = ε(1 + ρ)k2t = ε(1 + ρ)k2

(s0 + Km)k1
τ.

Then the system of (10) can be represented in dimensionless form as follows:

du

dt
= −(1 + σ)u + σuv + ρ

1 + ρ
v,

ε
dv

dt
= (1 + σ)u − σuv − v,

subject to an appropriate initial condition u(0) = c0 and v(0) = d0 determined by
(11). In order to apply the MHPM we consider a subinterval �i = (ti , ti+1) with an
equalspaced point ti = �t × i , i = 0, 1, 2, . . .. Let ui = u|�i and vi = v|�i . Then ui

and vi satisfy the following system in �i

dui

dt
= −(1 + σ)ui + σuivi + ρ

1 + ρ
vi ,

ε
dvi

dt
= (1 + σ)ui − σuivi − vi , (12)

Applying the HPM to (12) we can construct the homotopy which satisfies the following
relations:

(1 − p)

[
dui

dt
+ (1 + σ)ui

]
+ p

[
dui

dt
+ (1 + σ)ui − σuivi − ρ

1 + ρ
vi

]
= 0,

(1 − p)

[
ε

dvi

dt
+ vi

]
+ p

[
ε

dvi

dt
− (1 + σ)ui + σuivi + vi

]
= 0. (13)

Let ui and vi be given by a power series with respect to the embedding parameter p
as follows:

ui = ui,0 + pui,1 + p2ui,2 + p3ui,3 + · · · ,

vi = vi,0 + pvi,1 + p2vi,2 + p3vi,3 + · · · . (14)

Substituting (14) into (13) and collecting terms with the same powers of p, we have
a few corresponding equations for ui, j and vi, j as follows:
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p0 : dui,0

dt
+ (1 + σ)ui,0 = 0,

p1 : dui,1

dt
+ (1 + σ)ui,1 − σui,0vi,0 −

(
ρ

1 + ρ

)
= 0,

p2 : dui,2

dt
+ (1 + σ)ui,2 + σui,0vi,1 + σui,1vi,0 −

(
ρ

1 + ρ

)
vi,1 = 0,

... (15)

and

p0 : ε
dvi,0

dt
+ vi,0 = 0,

p1 : ε
dvi,1

dt
− (1 + σ)ui,1 + vi,1 + σui,0vi,0 = 0,

p2 : ε
dvi,2

dt
− (1 + σ)ui,1 + vi,2 + σui,1vi,0 + σui,0vi,1 = 0,

... (16)

Let sui ,m and svi ,m be the m-partial sums of ui and vi defined by

sui ,m =
m∑

j=0

ui, j , svi ,m =
m∑

j=0

vi, j . (17)

In order to obtain ui, j , vi, j , i, j = 0, 1, 2, . . . , it is necessary to impose initial con-
ditions ui, j (ti ) and vi, j (ti ). From the initial condition u(0) = c0, v(0) = d0 we have
u0,0(t0) = c0 and v0,0(t0) = d0. For i ≥ 1 we assume ui,0(ti ) = sui−1,m(ti ) ≡
ci , vi,0(ti ) = svi−1,m(ti ) ≡ di , and ui, j (ti ) = vi, j (ti ) = 0 for j ≥ 1. Using these
initial conditions the solutions of ui, j and vi, j in (15), (16) can be solved. Since the
solutions ui, j , vi, j , j ≥ 2 are very complicated we only list the first two solutions of
ui, j and vi, j , j = 0, 1 as follows:

ui,0(t) = ci e
(ti −t)(1+σ)

ui,1(t) = diε

(1 + ρ)(−1 + ε + εσ )
e−t (1+ε+εσ )/ε

[et+ti /ε+tσ ρ − ci e
ti (1+1/ε+σ)(1 + ρ)σ(−1 + ε + εσ )

+eti +t/ε+ti σ {ciσ(−1 + ε + εσ ) + ρ(−1 + ciσ(−1 + ε + εσ ))}], (18)

and

vi,0(t) = di e
(ti −t)/ε

vi,1(t) = [ci e
−t/ε − et/ε+(ti −t)(1+σ)ε(1 + σ)2 + di e

−t (1+σ)+ti (1+1/ε+σ)

σ (−1 + ε + εσ ) + eti /ε{diσ − ε(1 + σ)(−1 + (−1 + di )σ )}]
/(ε(1 + σ)(−1 + ε + εσ )). (19)
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3.2 Brusselator model

The Brusselator model is an autocatalytic and oscillatory chemical model, which
was proposed by Prigogine and his collaborators [13]. The autocatalytic reaction is a
common nonlinear reaction in which a reactant species interacts with other species to
increase its production rate. The mechanism of the Brusselator model is described as

A
k1→ X, 2X + Y

k2→ 3X,

B + X
k3→ Y + D, X

k4→ E (20)

Here X and Y are the autocatalytic species and A, B, D and E are constant species. If
we denote the concentration of species X, Y, A, B, D, E by x, y, A, B, D, E , respec-
tively. we writhe the governing equation as

d

dt

[
x
y

]
=

[
1 1 −1 −1
0 −1 1 0

]
⎡

⎢⎢⎣

k1 A
k2x2 y
k3 Bx
k4x

⎤

⎥⎥⎦

To find the equilibrium points, we set

k1 A + k2x2 y − k3 Bx − k4x = 0, −k2x2 y + k3 Bx = 0.

It gives the unique equilibrium point (xe, ye), where

xe = k1 A

k4
, ye = k3k4 B

k1k2 A
.

For a stability analysis at the equilibrium point, we find the Jacobian

J =
(

2k2xe ye − k3 B − k4 k2x2
e

−2k2xe ye + k3 B −k2x2
e

)
=

(
k3 B − k4 k2x2

e
−k3 B −k2x2

e

)
,

and its characteristic equation is

|J − λI | =
∣∣∣∣
k3 B − k4 − λ k2x2

e
−k3 B −k2x2

e − λ

∣∣∣∣ = λ2 − (k3 B − k4 − k2x2
e )λ + k2k4x2

e = 0.

From the basic theory of the stability analysis, we see that since k2k4x2
e > 0, the

equilibrium point is unstable if trace(J − λI ) = (k3 B − k4 − k2x2
e ) > 0 and stable

if (k3 B − k4 − k2x2
e ) < 0.

Without loss of generality, if we assume k1 = k2 = k3 = k4 = 1, we find that if
B > 1+ A2, the equilibrium point is unstable and if B < 1+ A2, then it is stable. This
model has different dynamical behaviors for different values of A and B. Especially, if
B > 1 + A2, the solution trajectory shows oscillations. We will show that our method
can capture this notable property accurately.
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To present the method for the model, we first rewrite the governing equation of (20)
under the assumption k1 = k2 = k3 = k4 = 1 as follows;

dx

dt
= A + x2 y − Bx − x,

dy

dt
= −x2 y + Bx, (21)

subject to the initial condition x(0) = c0 and y(0) = d0. Let us consider a subinterval
�i = (ti , ti+1) with ti = �t×i, i = 0, 1, 2, . . . . Define xi = x |�i and yi = y|�i , i =
0, 1, 2, . . . . Then we have

dxi

dt
= A + x2

i yi − Bxi − xi ,

dyi

dt
= −x2

i yi + Bxi , (22)

In order to apply the HPM to (22) we can construct the homotopy as follows:

(1 − p)

[
dxi

dt

]
+ p

[
dxi

dt
− A − x2

i yi + Bxi + xi

]
= 0,

(1 − p)

[
dyi

dt

]
+ p

[
dyi

dt
+ x2

i yi − Bxi

]
= 0. (23)

Suppose that the solutions xi and yi can be represented as a power series with respect
to the embedding parameter p

xi = xi,0 + pxi,1 + p2xi,2 + p3xi,3 + · · · ,

yi = yi,0 + pyi,1 + p2 yi,2 + p3 yi,3 + · · · (24)

Substituting (24) into (23) and collecting terms with the same powers of p, we have
a few corresponding equations for xi, j and yi, j as follows:

p0 : dxi,0

dt
= 0,

p1 : dxi,1

dt
− A + xi,0 + Bxi,0 − x2

i,0 yi,0 = 0,

p2 : dxi,2

dt
+ xi,1 + Bxi,1 − 2xi,0xi,1 yi,0 − x2

i,0 yi,1 = 0, (25)

and

p0 : dyi,0

dt
= 0,

p1 : dyi,1

dt
− Bxi,0 + x2

i,0 yi,0 = 0,

p2 : dyi,2

dt
− Bxi,1 + 2xi,0xi,1 yi,0 + x2

i,0 yi,1 = 0. (26)
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The initial conditions x(0) = c0, y(0) = d0 give x0,0(t0) = c0, y0,0(t0) = d0.
We assume xi,0(ti ) = si−1,m(ti ) ≡ ci , yi,0(ti ) = si−1,m(ti ) ≡ di for i ≥ 1, and
xi, j (ti ) = yi, j (ti ) = 0 for i, j ≥ 1. Here sxi ,m and syi ,m are the m-partial sums of xi

and yi , defined by

sxi ,m =
m∑

j=0

xi, j , syi ,m =
m∑

j=0

yi, j .

Solving the systems (25) and (26) combined with the imposed initial conditions we can
obtain the solutions xi, j and yi, j . The first three solutions of ui, j and vi, j , j = 0, 1, 2
are given as follows:

xi,0(t) = ci ,

xi,1(t) = (A + ci (−1 − B + ci di ))(t − ti ),

xi,2(t) = −1/2[A(1 + B − 2ci di ) + ci (−1 − B2 + 3ci di + c3
i di

−2c2
i d2

i − B(2 + c2
i − 3ci di ))](t − ti )

2, (27)

and

yi,0(t) = di ,

yi,1(t) = ci (B − ci di )(t − ti ),

yi,2(t) = 1/2[A(B − 2ci di ) + ci (−B2 − B(1 + c2
i − 3ci di )

+ci di (2 + c2
i − 2ci di ))](t − ti )

2. (28)

4 Results and discussions

4.1 Enzyme-substrate reaction model

To show the performance of the MHPM to (12) we employ the m-partial sums of ui , vi

in each subinterval �i

sui ,m =
m∑

j=0

ui, j , svi ,m =
m∑

j=0

vi, j ,

where ui, j and vi, j are the solutions in (18) and (19), respectively. Let us define
su,m, sv,m by the m-partial sums of u, v in whole domain �

su,m =
n∑

i=0

sui ,mχi , sv,m =
n∑

i=0

svi ,mχi ,

where χi is a characteristic function defined by χi (t) = 1, t ∈ �i and χi (t) = 0,
otherwise. For all numerical tests the initial conditions are set by c0 = 1 and d0 = 0.
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Fig. 1 Profile of the normalized concentrations of the substrate u (solid line), enzyme-substrate complex
v (dash-dot line) and enzyme E (dotted line) for ε = 0.1, σ = 0.1, ρ = 0.1. The curves represent the
numerical solutions by the MHPM and the symbols by the RK4

In Figs. 1, 2 and 3, the numerical results by the MHPM and the fourth-order Runge–
Kutta(RK4) are plotted. Here the parameters are set by σ = ρ = 0.1 and the ε is
varying from 0.1 to 10. In MHPM the two-term approximations su,1 and sv,1 are
employed with the step size of time h = 0.1 and the RK4 uses h = 0.001 as the
step size of time. It is worth noting that all results obtained by the MHPM with less
computational work are in a good agreement with the ones by the RK4. In [9] authors
showed various results by the standard HPM with different parameters. The dynamics
of the concentrations u and v are agreed with our results. However, the behavior of
the concentration of u is different. It is easy to see from (12) that the concentration
of u should be decreasing at t = 0 because of u(0) = 1, v(0) = 0 and the positive
parameters. The results in [9] showed that the concentration u is increasing at t = 0.

To show the accuracy of the MHPM the comparisons of the maximum errors ||su,m−
uh ||∞, ||sv,m − vh ||∞, m = 1, 2 are demonstrated in Tables 1 and 2. Here uh and vh

are the numerical approximations by the RK4. Also the rates of convergence are listed
in the same tables. It has been shown that the rate of convergence is of linear order
with respect to the number of term. Let us remark that even though the approximation
by the standard HPM gives a similar dynamic behavior, the MHPM yields a more
accurate approximation.

4.2 Brusselator model

As presented in the previous section we consider the m-partial sums sxi ,m and syi ,m

of xi and yi in (22) to demonstrate effectiveness of the proposed method. That is,
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Fig. 2 Profile of the normalized concentrations of the substrate u (solid line), enzyme-substrate complex
v (dash-dot line) and enzyme E (dotted line) for ε = 1.0, σ = 0.1, ρ = 0.1. The curves represent the
numerical solutions by the MHPM and the symbols by the RK4
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Fig. 3 Profile of the normalized concentrations of the substrate u (solid line), enzyme-substrate complex
v (dash-dot line) and enzyme E (dotted line) for ε = 10, σ = 0.1, ρ = 0.1. The curves represent the
numerical solutions by the MHPM and the symbols by the RK4

sxi ,n =
n∑

j=0

xi, j , syi ,n =
n∑

j=0

yi, j ,

where xi, j and yi, j are the solutions in (27) and (28), respectively. In a similar way we
define sx,m, sy,m by the m-partial sums of x, y in a whole domain. For all numerical
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Table 1 Maximum errors and
convergence rates for the
approximation su,m , m = 1, 2
with ε = 1.0, σ = 0.1, ρ = 0.1

h ||su,1 − uh ||∞ Rate ||su,2 − uh ||∞ Rate

0.32 9.03529(−3) 1.61093(−4)

0.16 4.63788(−3) 0.96211 4.53692(−5) 1.82811

0.08 2.34792(−3) 0.98208 1.20118(−5) 1.91726

0.04 1.18126(−3) 0.99105 3.08000(−6) 1.96345

0.02 5.92591(−4) 0.99522 7.82900(−7) 1.97603

0.01 2.96779(−4) 0.99765 1.97093(−7) 1.98995

Table 2 Maximum errors and
convergence rates for the
approximation sv,m , m = 1, 2
with ε = 1.0, σ = 0.1, ρ = 0.1

h ||sv,1 − vh ||∞ Rate ||sv,2 − vh ||∞ Rate

0.32 9.53380(−3) 1.06277(−3)

0.16 5.13533(−3) 0.89259 2.67272(−4) 1.99145

0.08 2.67213(−3) 0.94246 6.71800(−5) 1.99221

0.04 1.36236(−3) 0.97188 1.68177(−5) 1.99805

0.02 6.87856(−4) 0.98593 4.20900(−6) 1.99843

0.01 3.45612(−4) 0.99295 1.05226(−6) 1.99999

t

C
o

n
ce

n
tr

at
io

n
:x

,y

0 5 10 15 20 25 30

0

0.5

1

1.5

Fig. 4 Profile of the concentrations of species x (solid line) and y (dotted line) for A = 1.0, B = 1.0. The
curves represent the numerical solutions by the MHPM and the symbols by the RK4

tests the initial conditions are set to be c0 = 1 and d0 = 0 and the parameter A is
fixed by A = 1 and B is varying from 1.0 to 2.5. It has been known that the phase
of x(t) and y(t) is highly oscillating as the parameter B is increasing. For all para-
meters B numerical results by the MHPM are in a good agreement with the results
by the RK4 in Figs. 4, 5, 6 and 7. Here the step sizes of time in MHPM and RK4 are
h = 0.1 and h = 0.001, respectively. The three-term approximations sx,2 and sy,2
are employed in MHPM. To demonstrate of the accuracy of MHPM the maximum
errors between MHPM and RK4 are shown in Tables 3, 4, 5 and 6 as the number of
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Fig. 5 Profile of the concentrations of species x (solid line) and y (dotted line) for A = 1.0, B = 1.5. The
curves represent the numerical solutions by the MHPM and the symbols by the RK4
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Fig. 6 Profile of the concentrations of species x (solid line) and y (dotted line) for A = 1.0, B = 2.0. The
curves represent the numerical solutions by the MHPM and the symbols by the RK4

term n is increasing from n = 2 to n = 6. The results show that the proposed method
is of linear rate of convergence with respect to the number of term. For the large
number of term m = 6 the approximations sx,m, sy,m do not follow the linear order
because of very small errors. Let us note that the standard HPM yields all approx-
imations which are blowing up exponentially in a short time as the parameter B is
increasing.
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Fig. 7 Profile of the concentrations of species x (solid line) and y (dotted line) for A = 1.0, B = 2.5. The
curves represent the numerical solutions by the MHPM and the symbols by the RK4

Table 3 Maximum errors and convergence rates for the approximation sx,m , m = 2, 4, 6 with A =
1.0, B = 1.5

h ||sx,2 − xh ||∞ Rate ||sx,4 − xh ||∞ Rate ||sx,6 − xh ||∞ Rate

0.32 9.0668(−2) 3.0866(−2) 1.2754(−2)

0.16 1.0508(−2) 2.58706 1.1963(−3) 4.68931 1.2427(−4) 6.68134

0.08 2.9750(−3) 2.34254 5.1655(−5) 4.53361 1.2120(−6) 6.67995

0.04 6.6565(−4) 2.16007 2.6585(−6) 4.28021 1.4548(−8) 6.38033

0.02 1.5704(−4) 2.08356 1.5095(−7) 4.13846 1.9886(−10) 6.19299

0.01 3.8158(−5) 2.04112 8.9738(−9) 4.07224 2.1782(−11) 3.19053

Table 4 Maximum errors and convergence rates for the approximation sy,m , m = 2, 4, 6 with A =
1.0, B = 1.5

h ||sy,2 − yh ||∞ Rate ||sy,4 − yh ||∞ Rate ||sy,6 − yh ||∞ Rate

0.32 6.9831(−2) 2.739(−2) 1.1808(−2)

0.16 1.2216(−2) 2.51508 1.066(−3) 4.68318 1.1525(−4) 6.67874

0.08 2.4482(−3) 2.31896 4.887(−5) 4.44760 1.1836(−6) 6.60556

0.04 5.4723(−4) 2.16154 2.577(−6) 4.25048 1.4521(−8) 6.34883

0.02 1.2942(−4) 2.08000 1.468(−7) 4.12761 1.9979(−10) 6.18358

0.01 3.1484(−5) 2.03946 8.770(−9) 4.06606 3.6115(−11) 2.46782
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Table 5 Maximum errors and convergence rates for the approximation sx,m , m = 2, 4, 6, with A =
1.0, B = 2.5

h ||sx,2 − xh ||∞ Rate ||sx,4 − xh ||∞ Rate ||sx,6 − xh ||∞ Rate

0.32 3.9234(−1) 1.8491(−1) 1.2704(−1)

0.16 8.0172(−2) 2.29095 7.0581(−3) 4.68931 1.4430(−3) 6.46005

0.08 1.8889(−2) 2.08553 4.3600(−4) 4.53361 1.8121(−5) 6.31527

0.04 4.5433(−3) 2.05574 2.5523(−5) 4.28021 2.5556(−7) 6.14783

0.02 1.1234(−3) 2.01581 1.5495(−6) 4.13846 3.6707(−9) 6.12149

0.01 2.7925(−4) 2.00829 9.5037(−8) 4.07224 1.7345(−10) 4.40348

Table 6 Maximum errors and convergence rates for the approximation sy,m , m = 2, 4, 6 with A =
1.0, B = 2.5

h ||sy,2 − yh ||∞ Rate ||sy,4 − yh ||∞ Rate ||sy,6 − yh ||∞ Rate

0.32 5.3609(−1) 2.2791(−1) 1.7955(−1)

0.16 1.2169(−1) 2.13922 9.4247(−3) 4.59591 1.9065(−3) 6.55728

0.08 2.7652(−2) 2.13780 5.3302(−4) 4.14418 2.4247(−5) 6.29703

0.04 6.7861(−3) 2.02675 3.1559(−5) 4.07806 3.2580(−7) 6.21767

0.02 1.6825(−3) 2.01194 1.8673(−6) 4.07901 4.5776(−9) 6.15325

0.01 4.1937(−4) 2.00435 1.1320(−7) 4.04401 2.5079(−10) 4.19003

5 Conclusion

We presented the multistage homotopy perturbation method for approximating ana-
lytic solutions of nonlinear reaction networks. We applied the method to the enzyme-
substrate model and the Brusselator model with a rigorous manner and we illustrated
the accuracy and efficiency of the method. In the enzyme-substrate model, we com-
pared our results with those by conventional schemes such as fourth-order Runge–
Kutta method, and we showed that the numerical solutions from the proposed method
are efficient and accurate. In the Brusselator model, we employed the method for
various parameters which lead to different dynamical behavior of the model. The
solution trajectories for each parameter are found accurately and the method success-
fully captured highly oscillating behavior of the model as well as dynamics near the
equilibrium.

For most of complex reaction networks, the analytic solutions of their governing
equations are not obtainable. The method proposed in this paper can be applied for
finding the approximate analytic solutions of the complex reaction networks with
nonlinear reactions. We expect that the method will be used to investigate the dynamical
behavior of large reaction networks such as genetic networks and metabolic networks.
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